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AN INTEGRAL EQUATION METHOD IN PLANE ELASTICITY 

By Kwan Rim and Allen S. Henry 

Department of Mechanics and Hydraulics 
The University of Iowa 

Iowa City, Iowa 

SUMMARY 

A direct numerical method is developed for solving the first fundamental 
boundary-value problem of plane elastostatics. The method is based on the 
formulation of the biharmonic stress function in terms of two harmonic func- 
tions and the subsequent representation of the harmonic functions as poten- 
tial functions, each containing an unknown source density function. The 
boundary conditions yield two coupled integral equations of the Fredholm type, 
the solution of which determines the source density functions. 

Numerical solutions for the unknown source densities are determined by 
approximating the Fredholm equations by sets of simultaneous algebraic equa- 
tions which may be set up and solved by a high-speed digital computer. Once 
the source density functions are known, stresses may be calculated anywhere 
in the elastic domain. Numerical illustrations are presented for a circular 
region loaded with diametrally opposite concentrated forces and for an infi- 
nite domain with an elliptic internal boundary subjected to a constant pressure. 

INTRODUCTION 

The purpose of this report is to present a direct numerical method for 
solving the first fundamental boundary-value problem of plane elastostatics. 
The essence of the method is to develop solutions to two coupled integral 
equations of the Fredholm type. These equations arise from the requirement 
that a biharmonic stress function, represented in terms of single-layer poten- 
tials, must satisfy certain specified conditions on the boundary. The basis 
of the numerical technique lies in the replacement of the integral equations 
by sets of algebraic equations. 

In both the formulation and practical implementation of the method, there 
are no restrictions on the geometry of the region except that the boundary con- 
tours must be piece-wise smooth and that it is necessary to distinguish between 
problems involving 

1) Interior domains, 
2) Exterior domains, 
3) Multiply-connected domains. 

The factors permitting such an unusual degree of generality will be emphasized 
as they appear in the following sections of this report. 



A discussion of the fundamental theory relating to this integral equation 
method may be-found in a paper byj,Jaswon (ref. 1) which presents a study of 
Fredholm equations related to harmonic and biharmonic boundary-value problems. 
A sequel to Jaswon's paper (ref. 2) describes a numerical technique developed 
to obtain approximate solutions to Fredholm equations. Numerical results are 
presented for certain harmonic problems. A third paper (ref. 3) illustrates an 
application of the method by computing solutions to the classical torsion prob- 
lem and extensive numerical results are given. Finally a dissertation by Symm 
(ref. 4) provides a thorough theoretical discussion and numerical results for 
several harmonic and biharmonic problems. 

The research reported herein is an extension of the work reported in the 
above papers and is specifically concerned with exploiting fully the numerical 
technique in determining stress fields in interior and exterior domains. The 
numerical examples chosen serve to illustrate the effect of boundary loading 
and geometry on the accuracy of numerical results. The interior problem treat- 
ed is a circular disk subjected to diametrally opposite concentrated forces. 
The exterior problem is an infinite medium with an elliptic hole subjected to 
uniform pressure. In this case, results are presented for various eccentrici- 
ties. Particular attention is paid to the accuracy of the computed boundary 
stresses, since it may serve as a measure of convergence. 

In the following section, the theoretical basis of the method is outlined 
in discussing the interior problem. No attempt is made to discuss the ques- 
tions of existence and uniqueness of solutions as such discussions may be found 
in the literature (refs. 1 and 4). Then the exterior problem and the computa- 
tional technique are treated. Finally, numerical results are presented and 
several conclusions are induced. In this report, only the first fundamental 
boundary-value problems in plane elastostatics are discussed, and no problems 
of multiply-connected domains are treated. 

SYMBOLS 

D 
P 
PI q 

u 
X’ aYs TV 

0 

Fx, F 

v2 y 

2 

a planar domain bounded by a closed curve L. 
a vector point in D with coordinates (x,y). 
vector points on L with coordinates (x,y) and 
(x , yq), respectively. 

9 
(note that. p # P) 

unit vectors normal and tangent to L. 
a stress function biharmonic in D. 
harmonic functions in D. 
source densities defined on L. 
the natural logarithm of the scalar distance between 
P(x,y) and q(xq, yq). 
stress components. 

total stress, 8 = ux + u . 
Y 

x- and y- components of the stress vector on L 
respectively. 
Laplace's operator $=L+L. 

ax2 ay2 



BASIC THEORY: THE INTERIOR PROBLEM 

The.problem of determining the stress field in a planar region, subjected 
to specified boundary loadings, may be posed mathematically as one of finding a 
stress function x which is related to the stress components by the equations 

u a2x 
X =Tp a2x 

ay 
=y=a,2* Tv 

Z-k (1) 

The stress function will satisfy the compatibility and the equilibrium equa- 
tion provided that it is a solution to the biharmonic equation within the re- 
gion of interest; 

V2V2x(P) =o, P(x,y) in D. (2) 

The stress components defined by (1) must be consistent with the state 
of stress specified on the boundary L of the domain D. If Fx and F 

Y 
are the stress components in the x and y directions specified on L, then 
the boundary conditions may be written, using equations (11, as 

= ax a2K 
- F~ an 

aY2 

= ti a2x 
-' an- Y ax2 

i!Y - an 

ax 
-an 

32x hay 

a2x 
axay 1 

on L (3) 

where ?i is the normal to L directed inward toward D. The notation employed 
is depicted in figure 1. 



Figure l.- Sign convention for an interior domain. 

The basic mathematical problem posed is that of finding a solution x to 
equation (2) which satisfies the boundary conditions (3). The approach 
taken herein is to first present a general solution for x(P) which satisfies 
(21, and then develop a numerical scheme for fitting the general solution to 
the boundary conditions (3). 

A general representation for a biharmonic function is 

x(P) = r2(P) @(PI + $(P) 

where r(P) = (x2 + y2) 
% 

and 0 and $ are harmonic functions; 

V2$(P) =o, V2$(P) =o; P in D. 

and 

4 

The single-layer potentials 

@(PI = J, a(q) log 

q(p) = J, iA(q) log 

Ip - 41 dq 

Ip - 41 dq 

(4) 

(5) 

(6) 



are both harmonic within D as a and 
log Ip - sl 

N are defined only on L and 
is harmonic. Integration is over the entire boundary and dq 

is a scalar element of arc on L. Substitution of (5) and (6) into (4) 
yields 

x(P) = r2(P)jL a(q)loglP - qldq + I, dq)loglP - qldq (7) 

which is a-biharmonic function involving two unknown functions a and IJ, 
commonly termed "source density" functions. The properties of this representa- 
tion are available in the literature (refs. 1, 2, 3 and 4) and the representa- 
tion for x given by (7) is complete only for simply-connected interior 
domains. 

An examination of (7) indicates that the use of the boundary conditions 
as presented by (3) is awkward, for these equations require that representa- 
tions be developed for the second derivatives of x. Hence the boundary condi- 

tions (3) are used to derive conditions for x and s on the boundary L. 

If the tangent to L, s, is directed so as to keep D on the left, then 
(3) may be written, using the Cauchy-Riemann conditions, as 

Fx =&($I, F 
Y 

=-+&$I. 

Then since 

ax ax ax ax * -=--+s 
as ax as ay as 9 

direct substitution and integration yield 

also it follows that 

(9) 

where s is on the boundary L; so designates an arbitrary point on L and 

a, 6 and y are constants of integration which may be set to zero as they 
make no contribution to the stress field. 



OX 
Note that equations (81 and (9) permit X and .K to be'computed 

directly once the boundary tractions and the boundary geometry are specified. 

The boundary value problem originally defined by (2) and (3) is now 
presented in canonical form by (21, (8) and (9). Since the representation 
of x provided by (7) automatically satisfies (21, the boundary value 
problem is solved formally by requiring (7) to satisfy (8) and (9). These 
two boundary equations lead to two coupled integral equations for the determi- 
nation of a(q') and u(q). It is generally impossible to solve the coupled 
integral equations exactly, hence a numerical method is developed for obtaining 
approximate solutions. 

The fundamental approximation is to assume that the source densities c 
and u are piece-wise constant functions on the boundary L. Hence the bound- 
ary is divided into m subdivisions or intervals numbered consecutively in the 
direction of increasing s, and within each interval a(q) and U(q) are 
assigned the unknown constant values ai and vi (i = 1, 2, . . . m). The 

i-th interval is assigned length hi and the center and end points are denoted 

9i' 'i-1/2 and q i+1/2 ' This situation is depicted in figure 2. In accord- 

ance with these assumptions, equation (7) becomes 

x(P) = r2(P) r ai 
i=l 

log]P - qIdq + I pi ~OdP - qbq (10) 
i- i=l i 

where integration is over the ! i-th interval. 

Y 

Figure 2.- Boundary subdivisions. 
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Finally, the stress function X(P) given by (10) is required to satis- 
fy the boundary conditions (8 and 9) at the center point of each interval. 
If the center point of the j-th interval is also denoted by p., then 

1 

lim 
P+P I a(q)log)P - qldq = I o(q)loglp - qldq 

L L 

and lim 2 
P-+p an I a(q)loglP - qldq = so(p) g+ I a(q)l - qldq 1 

L L 

where log’ IP - sl = ,& l%lP - sl . 

Hence the simultaneous equations for a. and 
I 'Lj 

become 

X’Pj ’ = r2(pj) T ai 
i=l I 

‘OglPj - qIdq + ! pi 
I 

‘OgIPj - qIdq 
i i=l i 

(11) 

= n[r2(pj)c(pj) + v(pj)l + 2 
ar(p.1 m 

an’ C ai 
i=l I 

‘OgIPj - qIdq 
i 

+ r2(pj) y 'i 
I 

log’ IPj - qIdq + y pi 
I 

lOftlP, - qldq 3 (12) 
i=l i=l J 

i i 

where j = 1, 2, 3, . . . m. For simplification, one may introduce the follow- 
ing notations: 

A = ji 
I 

1OglPj - qldq ) Bji = 
I 

‘Og’IPj - qldq l 

i i 

Since 
aX(Pj) 

X(Pj' and an are known from (8) and (91, relations (11) and 

(12) represent 2m equations for 2m unknowns ai and pi (i = 1, 2, . . .m). 

Once the ui and ui are known, the stresses may be determined by differenti- 

ating (10) and performing the required calculations. 

The preceding analysis is adequate for the treatment of interior problems; 
that is, the representation provided by (7) is complete and the solutions of 
(11) and (12) lead to a unique stress function X(P). As will be seen, 

7 



however, slight changes are required in the treatment of the exterior problem. 

THE EXTERIOR PROBLEM 

In order to solve the problem of determining stresses in an infinite elas- 
tic domain with an interior boundary, a slight change is required in the repre- 
sentation of the stress function. Consideration of (7) shows that as IPI 
goes to infinity, one has 

x(P) + r'(P)log(PJ 
I 

a(q)dq + loglP/ 
I 

u(ddq , (13) 
L L 

An analysis of the relation between X(P) and the displacements associated 
with the stress field shows that in order for these displacements to be single- 

valued the stress function cannot contain the term r'(P)loglPI (refs. 1 and 
4). Hence, from (131, it follows that 

I 
a(q)dq = 0 . 

L 

A result of imposing this constraint on the representation of X given by 
(7) is that X(P) is of order IPI as IPI -t 00 . Hence all stress components 
will approach zero as IPI goes to infinity. Therefore, if a problem requires 
that non-zero stresses exist at infinity, additional terms which satisfy these 
conditions must be added to X as given by (7). Finally it may be shown from 
(13) that (7) does not permit X to contain a constant term as is required 
in the most general representation of a biharmonic function. Therefore, the 
addition of an arbitrary constant A to the representation provided by (7) 
is required. 

With these modifications implemented, a necessary and sufficient repre- 
sentation of the stress function for an exterior problem is 

x(P) = r2(P) 
I 

o(q)log(P - qldq + 
I 

u(qUoglP - qldq + A (14,) 
L L 

-with the additionaL condition that 

I a(q)dq = 0 . 

L 



Assuming a(q) and p(q) to be piecewise constant on L and requiring 
that x and its normal derivative satisfy conditions at the m interval cen- 
ter points leads directly to 2m + 1 equations in the 2m + 1 unknowns A, 
a. and . 

'ii 1 = 1,2, . . . m . 

eiuations given by (11) and 

These equations are identical to the set of 

(12) except for the inclusion of the constant 
A and the condition that 

0 = 7 aihi . 
i=l 

Except for the modifications indicated above, the interior and exterior prob- 
lems can be treated in identical fashion. In the next section, a discussion 
is given concerning the computational technique used to determine the source 
densities and to compute the stress components. 

COMPUTATIONAL TECHNIQUE 

For the purpose of illustration, let us consider the equations which must 
be solved to determine the stress function applicable to an exterior problem. 
These equations are: 

f 
i=l 

air2(p.)A , ji + i viAji + A 
i=l 

= X(Pj) (15) 

m 
1 oiCrr2(pj)d.. )B 

i=l 13 
+ r2(p j ji + (r2(pj))'Ajil + T pi("dij + Bji) 

i=l 
= x'(pj)(16) 

y Uihi = 0 
i=l 

where 

A ji = I log 
i 

IPj - qldq 

B = ji I log 
i 

I 

1, 
6 ij 

= 
0, 

’ IPj - qldq 

. . l=] 

I i#j . 

Recall that x(pj) and x '(pj) can be calculated from specified data; 

that is, the geometry and the loading conditions of the boundary. Then the 

9 

(j = 1, 2, . . . ml (171 



first task in seeking solutions to (15), (16) and (17) is to evaluate 
A ji and B... 

31 
In general, exact expressions for these quantities cannot be ob- 

tained; therefore, approximate integration formulas are used to evaluate these 
coefficients. The use of approximate formulas has the advantage that these 
formulas may be programmed on a digital computer and used for all problems 
thus preserving the generality of the method. 

The use of approximate integration formulas for the cases where the inte- 
grands are non-singular (i # j> is justifiable as these formulas may be more 
accurate than the original assumption that a(q) and u(q) are piecewise 
constant on L. When the integration is made over the 
then loglpj - ql and loglIpj - ql are singular at q 

j-th interval (i = j>, 

= 9' 
In these in- 

stances, analytic estimates of the integral are obtained by approximating the 
j-th interval by either straight line segments or a circular arc. In present- 
ing these formulas, the notations in figures 1 and 2 are used except that 

for the exterior problem the directions of ?i and 7 are reversed. 

For i#j, Simpson's rule gives 

h. 
A ji ’ ~ ClOglp. - qi-1/2/ + 4 log 

3 IPj - 4il + log IPj - 4i+1/211 

while a simpler formula yields 

B ji ~ hi ‘Og’IPj - qiI , 

(18) 

(19) 

where 

(x. - x 
3 9) i 

g++y 1% 
3 

'Og'lPj - qil' 
qi 

IPj - qi12 ’ 

If i = j, the j-th interval is approximated by two straight line segments 
joining 

qj-l/2 to qj 
and 

'j to qj+l/2 l 

Then analytic integration 

yields 

A 
jj ' l9j - 4j-1/21 [loglqj - qj,l/21 - ” 

+ lqj - 4j+l/21cloPlSj - 4j+1/21-lJ (20) 

10 



'l'o obtain an analytic estimate for Eii, the j-th interval is approximated 

by a circular arc. For this case, siige 

log' IPj - ql = 'O&lP, - ql' , 
J 

using the Cauchy-Riemann conditions it can be shown that 

B.. = - 
13 

I 

dQ(lp. - ql> 

ds dq 

j 

where MIPj - ql) is the angle between the line segment 

prescribed datum. Note that this integral is improper 

(21) 

IPj - qI and any 

Note: Dashed lines are tangents 
to L. 

j 
g ( lpj - q() dq = - (aI + a,) 

Figure 3.- Determination of B... 
33 

as $2 is discontinuous at q = p. , 
7 

hence the integration does not extend 

over the discontinuity. Figure 3 shows the geometry associated with this in- 
tegration. 

From figure 3 it is seen that 

11 



I a for exterior problems 
B = 

3 -a for interior problems, 
(21a) 

where a can be computed from the law of cosines. The data required for ap- 
proximations (18) through (21) are the coordinates of the interval end and 

center points, dx 
xii and z at the interval center points, and the interval 

lengths hi . 

The calculation of source densities is now reduced to a straightforward 
procedure which begins with the computation of constants A.. and B.. with 

31 31 
equations (18) through (21a) . For an interior problem, these constants are 
substituted into equations (11) and (12) which are solved for the 2m un- 
knowns ai and ui , i = 1, 2, . . . m . An exterior problem is handled in a 

like manner with equations (15), (16) and (17) . 

To calculate stresses in D one differentiates (14) or (7) in accord- 
ance with (1) and performs the indicated computations. The integrals appear- 
ing in the formulas for stress components are approximated by Simpson's rule, 
as all integrals are continuous if P lies within D (not on L). The accu- 
racy of integration formulas is illustrated in Appendix A. 

The calculation of stresses on the boundary is not so straightforward. 
Symm (ref. 41, for example, developed an extrapolation scheme for predicting 
stresses on or close to the boundary based on the stresses within D (at some 
distance from. L) known to be accurately calculated. A method of computation 
not requiring extrapolation is used in the present investigation, which leads 
to reasonably accurate boundary stresses. 

A general representation of the second derivatives of x(P) as P + p 
is not obtainable due to the strong singularity in the second derivatives of 

I loglp - qidq . 
L 

However, if only the total stress is considered 

8 x+a = 0 
Y 

= v2x ) 

then one can write 

12 



e(P) = V2Cr2(P) . i ui 
i=l I 

1oglP - qldql = 4 ~ ‘i lOgI’ - qId’ 
i i=l I i 

+ 2Vr2(P) *I ai v 
I 

loglp - slds 
i=l i 

as 

V2 
I 

1oglP - qldq = 0 , P in D. 

i 

When P+p on L, 6(p) is well defined since the limiting values of all in- 
tegrals can be obtained by using previously derived formulas. 

Once 0 is obtained on L, the stress components are determined from 
(31, by which one can show that 

(22) 

If T is known, o and (I 
XY X 

can be calculated directly from (3). 
Y 

NUMERICAL EXAMPLES 

The examples presented are: 1.) a circular disk subjected to diametrally 
opposite concentrated forces; and 2) an infinite media with an elliptic hole 
subjected to uniform internal pressure. Both examples have known analytic 
solutions, by which the accuracy of the numerical solutions may be conveniently 
assessed. Moreover, these examples illustrate significant characteristics of 
the numerical solutions. The first example shows the effect of extreme loading 
while the second illustrates that of boundary geometry. 

An important simplification employed in both examples is the reduction of 
the number of unknowns through considerations of symmetry. The coordinate axes 
are assigned in such a way that the geometry and loading are symmetrical about 
both the x and y axes. By subdividing the boundary symmetrically, a similar 
symmetry in 0. and u. 1 can be obtained. 

divisions arouid L is 2m 

Hence, if the total number of sub- 

then the number of equations and unknown source 
densities is reduced to m 'for interior problems and m + 1 for exterior 
problems. 

Example 1. Circular Disk under Concentrated Loads 

The analytic solution of this problem (ref. 5) is cited here for future 
reference (for notation, see figure 4): 

13 



Figure 4.- Example 1, point loads on a circular disk. 

-2s u x+u =,=- 
Y n 

cos3Y2 1 
+--= 

‘2 

2s sin $l cos2ql sinJ12 cos2e2 
f =- . 

XY 'II I r1 r2 t 

For the numerical analysis, the boundary was subdivided into intervals of 
equal length h and the x and y axes intersected L at interval end 
points. Hence the geometry, loading, and subdivision of L is symmetric with 
respect to both axes, and the number of subdivisions per quadrant is denoted 
by k. 

Equations (8) and (9) may be used to compute x(p) and x'(p) on the 
boundary. Choosing s = so at 4, = 5, one obtains symmetrical boundary 

conditions; 

14 



* 
3x( ) = 

n 

t -cos Los 2 2 I$ 9 c 

- Los 2 * 1' ;y<% 

S 1, 1' s 0 < < 4, 0, < + 2rr 
. 

(23a) 

(23b) 

Finally, the quantities %b$ and ?Y&?. may be calculated from the follow- 

ing formulas 

ax(p) 
an = - R cos 9, 

p on L. 

- R sin 0, 

(24) 

The source densities oi and pi (i = 1, 2, . . . k) are determined 
from equations (11) and (12) by using equations (23) and (241, subdivi- 
sion length h and the coordinates of the interval center and end points. 
Stress components are calculated at field points on several circular arcs. The 
boundary R = 10 is denoted by Co and the arcs with r = 9.75, 9.5, 9.0, 

8.0 and 6.0 by Cl, C2, C3, C4, and C5 respectively. Solutions are 
obtained for 4, 8, 16, 32 and 64 subdivisions per quadrant. The results 
are presented in tables 2 through 6 of Appendix B, in which both the exact 
and the numerical values of 8 and u 

Y 
are given. Presentation of the numer- 

ical results for each contour as a function of k is stopped once their conver- 
gence to within 1% has been obtained and an entry C is made in the tables. 

The total stress is calculated directly from 

8(P) = V2x(P) 

= V2[r2(P) 1 Qi 
I 

loglp - dw 
i=l z 



so that IJ i does not enter into the calculation. Values of the total stress 

are shown, because the method of calculating the stresses at the boundary 
through equations (22) and (3) is dependent on the accuracy of 8. It may 
be noted that close to the boundary the accuracy of the computed values of 9 
are somewhat better than those of u 

Y’ 

Tables 2 through 6 illustrate a number of special characteristics of 
the numerical solution. First of all, the convergence of the solution is 
slower in the region close to the boundary than in the region removed from the 
boundary, and in the region close to the point load than in the region away 
from it. Neither phenomena is unexpected. Both are related to the fact that 
the source densities are assumed to be piecewise constant. At a point close to 
the boundary, the stress is greatly affected by the boundary source densities 
in the immediate proximity and the local behavior of the source densities be- 
comes critical. However, it becomes very difficult to represent this local 
behavior accurately by piecewise constant source densities. Likewise, in the 
region close to the point load (x = 0 and on the boundary), the piecewise 
constant source densities are not capable of accurately representing the 
actual situation. 

In the major portion of the region convergence is obtained; that is, at 
those points in the region the computed values do not change as the number of 
subdivisions increases and the numerical solutions are in excellent agreement 
with known results. Note that one does not have to extend his computing fa- 
cilities to the limit on every occasion. If convergence is obtained with a 
small number of subdivisions at all points of interest, calculations may be 
stopped with assurance that the results are accurate. If the arc lengths 
of the boundary intervals are compared with the distances of the various con- 
tours from the boundary, it is observed that the numerical solutions with tol- 
erable accuracy are obtained at points which are at a distance greater than an 
interval length from the boundary. 

Finally, the values of total stress calculated on the boundary, using 
k = 64, are an order of magnitude less than those values calculated on the 
contour cl ' except near x= 0 . Therefore, the numerical results reflect 

quite well the physical condition that all stress components vanish on the 
boundary, except at x = 0 and y = 2 10 . The computation of boundary 
stresses will be considered in more detail in the next example. 

Example 2. Infinite Plate with an Elliptic Hole 

The problem of an infinite elastic media with an elliptic hole was con- 
sidered by Symm (ref. 4) who applied a similar integral equation method, The 
same problem is also considered here to study the effect of boundary geometry 
on the accuracy of the numerical solution by varying the semi-axis ratio a/b . 
The geometry and notations relevant to this example are shown in figure 5. 

16 



Figure 5.- Example 2, unit pressure on an elliptic hole. 

The quantities calculated to illustrate the numerical results are the max- 
imum shear stress T and the normal stress Ot tangent to the boundary. The 

analytical expressions for these quantities are given by (ref. 6): 

t(P)={~x;oy)2+t~yi;=s[;+a2y2 '>' 

2 
+ y2 - c 

]$ 

22 
X t 4c y 

2rl cos 

a,(p) s ( 4, 

- 3q2 t 1 

= 2 D 
r( - 2q cos 241 t 1 

) 

where 

c2 =a 2 - b2 , n = (a - b)/(a + b) . 

The coordinates of a point p on the boundary L are given by 

x(p) = a cos 4l , Y(P) = b sin $l . . 

17 
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To preserve symmetry, the boundary is subdivided into equal intervals and 
the axes are drawn through the interval end points. One can then determine the 
stress function x(P) represented in (14) by solving the 2k + 1 equations 
generated from equations (15) through (17). The symmetrical canonical 
boundary conditions applicable to the problem are, from (8) and (9), 

x(p) = - $ (x2 + y2) 

ax(p) 
an 

=-S(xax+ 
an 

Y& l 

ax ?Y The terms an and an are given by 
1 -- 

ax -=x 
an 9 

I -- 
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2 
2Y 
an = y cq, x t y2 

f 
. 

In order to illustrate the special characteristics of the numerical solu- 
tion, the results are presented for a/b = 1.5, 2 and 5. Figure 11 of 
Appendix B presents the tangential stress at calculated at the interval 
center points of the boundary of an ellipse with a/b = 1.5 and a = 1.5. 
Results are shown for k = 8 and 32, k being the number of subdivisions per 
quadrant. Note the improvement in accuracy as k increases. Slight fluctua- 
tions of the results with k = 32 are due to the assumption that the source 
densities are piecewise constant and to the ill-conditioning in the simultan- 
eous equations used to determine u. 1 and ui (i = 1, 2, . . . k). Both of 

these factors will be discussed later in some detail. 

In figures 12 and 13 of Appendix B are presented the numerical values 
of at for k = 32 for a/b = 2 and 5 respectively. A comparison of the 

calculated values of stress concentration at x = a with the known analytical 
values reveals that the accuracy of the numerical solution decreases as a/b 
increases. These figures also illustrate the difference between the stress 
values calculated at interval center points and those at interval end points. 
Again the effect of the basic assumption that the source densities are piece- 
wise constant is revealed. 'At an interval center point, the effect of this as- 
sumption, though significant, is generally tolerable. However, at interval end 
points, the approximate source density a(q) is discontinuous and, as such, 
creates an artificial situation at these points on the boundary. If one were 
to calculate at at all points on the boundary, in general the numerical 

solution would be in greatest error at the interval end points. 



In figure 14 are plotted the values of 10aih for k = 32 and for 

a/b = 2 and 5. The data points are plotted at each interval center point and 
a smooth curve is drawn through them. The quantity oih is chosen as it is 
independent of the circumference of an ellipse for a given a/b ratio. This 
parameter as plotted in figure 14 may be interpreted as a comparison of the 
source densities for two ellipses with the same circumferential length but with 
different a/b ratios. Note that, if the circumferences are equal, then the 
total load applied to the internal boundary is the same in both cases. Hence 
any difference in the stress distributions in the two media are entirely due 
to the difference in the boundary geometry. 

Figure 14 illustrates quite clearly why better accuracy may be expected 
in the case of a/b = 2 than in the case of a/b = 5. The rate of change of 
the source density u for a/b = 2 is much less than that for a/b = 5 
for virtually all values of x. Hence, the assumption that c(q) is piece- 
wise constant is more justifiable in the former case than in the latter. 
Similarly, if u were plotted for a/b = 1.5, one would find still less 
variation than when a/b = 2.0. The numerical results (figure 11) reflect 
this circumstance. 

Figures 12, 13 and 14 illustrate that the accuracy of the computed 
stresses at both the interval end and center points is in most instances di- 
rectly related to the rate of change of u with respect to x. It is also 
noted that the numerical results at interval end points are much mOre sensi- 
tive to the rate of change of u than those at interval center points. This 
phenomenon indicates that the basic assumption of piecewise constant source 
densities is a limiting factor in the application of this numerical method. 

It appears that the presence of a stress concentration (at x = a) does 
not, in itself, lead to the inaccurate results at that point. The relatively 
large error at x = 0 should be considered in terms of the variation in u in 
the neighborhood of x = 0. At those points where the rate of change of a is 
large, a relatively large error in stresses is observed even though the rate of 
change in stresses at such points is much less than that at x = a. 

Some additional results for the exterior problem of an ellipse with 
a/b = 5 are presented in tables 7, 8 and 9, for k = 4, 8, 16 and 32. 
Numerical results are presented at points on contours described by 

X2 

(a t SJ2 
ty2=1, 

(b t aI2 

contours C 1' c2 and C 3 corresponding to the cases of 6/a = 0.1, 0.06 
and 0.04 respectively. Each of these contours has the property that they are 
everywhere approximately a distance 6 away from the boundary. Hence, the 
tables show the convergence characteristics of the numerical solution as the 
field points uniformly approach the boundary. As in the case of the interior 
problem, excellent results are obtained in the region where a/a is greater 
than h/a. 
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So far little has been said about the magnitude of the computational work 
involved. It has been learned that the numerical technique presented in this 
report is quite economical with respect to computer time. For example, the 
total time required on an IBM 7044 system to solve the exterior problem of el- 
lipse with a/b = 5 for k = 4, 8, 16 and 32 was about eight minutes. 
This included the calculation of both the boundary and the field stresses. 

However, setting-up of a reliable computational program was not always so 
straightforward. For example, one of the exterior problems with k = 32 was 
reduced to that of solving a set of sixty-five simultaneous equations, and it 
became a problem of tackling an ill-conditioned matrix. The effect of matrix 
ill-conditioning is evidenced by the random fluctuations of the solution for the 
exterior problem with a/b = 1.5 and k = 32; see figure 11. In the case of 
a/b = 2 and 5, the problem of ill-conditioning was somewhat alleviated by 
using some scaling in the coefficient matrix and trying various subroutines. 
Nevertheless, ill-conditioning was still a problem in those computations and it 
was not possible to extend the number of boundary subdivisions from 32 to 48 
in any of the exterior problems. It is a conclusion of this investigation as 
well as of others (refs. 1, 2, 3 and 4) that the present formulation of the 
numerical scheme will inherently lead to the circumstance that the simultaneous 
equations governing the ci and P i become ill-conditioned as the number of 

boundary subdivisions increases. Therefore, if one were to increase the number 
of boundary subdivisions, he would have to make a substantial increase in the 
computational precision. 

CONCLUDING REMARKS AND RECOMMENDATIONS 

An integral equation method for solving the first fundamental boundary- 
value problem of plane elastostatics is presented. As illustrated through 
numerical examples, the principal advantages of this method are its 
simplicity and generality. This powerful method is likely to provide a new 
avenue of solution for some of the complicated biharmonic boundary-value prob- 
lems, which are not amenable to any other treatment. 

In order to study the practical applicability of this method, two typical 
example problems -- one with an extreme loading condition and the other with 
variable geometry -- are investigated. In both cases, excellent results are 
obtained everywhere in the region, except in the close neighborhood of the 
boundary (at a distance less than an interval length from the boundary). The 
following conclusions are drawn from this investigation: 

1). Once the convergence of a numerical solution has been established at 
a point, the error in the numerical results may be expected to be 
less than one percent. 

2). In general, the convergence of a numerical solution is obtained less 
rapidly in regions near the boundary than in areas removed from it. 

3). The accuracy and convergence of the stresses computed at the boundary 
are directly related to the rate of change of the source density at 



the boundary. 

4). Matrix ill-conditioning may occur before the convergence of the 
stresses at or near the boundary can be established. 

S). The main cause of matrix ill-conditioning, which occurs as the number 
of boundary subdivisions is increased, seems to lie in the basic as- 
sumption that the source density functions are piecewise constant 
on the boundary. 

Based on these conclusions, two recommendations are in order. The first 
one is to introduce a more general assumption on the source density functions; . l.e., they will be assumed to be piecewise linear within each boundary sub- 
division instead of piecewise constant. The second is to make a further re- 
finement in the computational scheme for the purpose of alleviating the problem 
of matrix ill-conditioning. The results of the further investigation will be 
reported in a sequel to this report. 
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APPENDIX A. ACCURACY OF NU-ERICAL INTEGRATIONS 

The accuracy of the approximate integration formulas is illustrated by 
comparing approximate and exact results calculated from the model shown in 
figure 6. The model consists of a line segment of length h inclined at an 
angle a to the x-axis. The field point P(x,y) is a distance E: away 
from the segment. 

Figure 6.- Analytical model. 

If the line segment represents a boundary subdivision, then the integral 

I = 
I 

log IP - qI dq 
i 

and its derivatives may be written as 

I 

h 
‘2 log (s t E2 t 2s E sin a) ds 

0 

I 
h 

Ix = - s cos a ds 

0 s2 t E2 + 2s E sin a 



and 

I 
h 

I - (E t s sin a) ds 
Y= 

0 s2 t E2 t 2s E sin a 

I z-1 J 
h 

YY q 

[(E t s sin aI2 - s2 cos2al ds 
xx 2 2 2 

0 (9 te t 2c s sin a) 

where the coordinate s is defined in figure 6 and subscripts on I denote 
differentiation with respect to the subscripted variable. 

Performing the indicated integrations, one obtains 

I = $ (h + E sin a) log (h2 t c2 t 2h E sin a) - E sin a log E - h 

- E: cos a ' tan -1 ( E cos a 
h t E sin a) 

IX 
= - cos a [*log (h2 t c2 t 2hc sin a)- $ log c21 t sin a tan -l(h t E sin a) 

E cos a 

- a sin a 

I = - sin a C$ log (h2 t c2 t 2hc sin a) 
Y 

- $ log E21 

- cos a[tan-l(h + c sin a) E co8 a - a] 

I Ixx = E sin a t h(sin2a - cos2a) sin a 
YY = - 

-- 
h2 t e2 t 2ch sin a E 

In all cases, Simpson's rule was used to determine approximate integration 
formulas. The formulas so derived are implicitly defined in the following 
manner. If 

H= 
I 

f(P.4 dq 9 
i 
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then by Simpson's rule one has 

H = $ Cf('Sqi,l/2 ) t 4f(P,qi) + f(PBqi+1/2)3 ' 

Specific formulas are developed by substituting the appropriate values of the 
integrands into the preceding equation. 

In the following figures, exact and approximate variables are superscripted 
with E and A respectively. The accuracy of the approximate formulas is 
illustrated by means of tables and curves showing 

T= IA/IE - 1 , 
TX 

= +f; - 1 , T 
Y 

= ?/I; - 1 ) 

and T 
YY 

= I~x/IExv - 1 . Note that Tyy = Txx . 
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Table l.,- Accuracy of IA for a = 0.0 

H =4 

E/h I T I 

2.5 -.00001 

1.25 -.00004 

.75 .OOl 

.5 .007 

.25 .03 

.125 -. 2 

E/h T 

4 

2 

1 

.5 

.25 

H = .5 

- .00001 

-.002 

-.0003 

-.007 

-.02 

I E/h T 

2.5 

1.25 

0.5 

.25 

.00002 

.00004 

-.003 

-.009 

H =l 

E/h T 

2 -.00009 

1 .OOl 

.5 -.02 

.25 -.04 

H = .25 

E/h T 

2 .OOOl 

1 -.0002 

.5 -.004 

.2 .015 

H = .05 

E/h T 

2.5 .00002 

1.0 -.00006 

.5 -.002 

25 



.01 

.o 

I 
w 

2 ' 

c 

-,O 

-.0: 

h=2 

\ 

-h=.2f 

80 - Q(O) 

-.- 

Figure 7.- Accuracy of IA for E/h = 0.5. 
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APPENDIX B. COMPARISON OF ANALYTICAL AND NUMERICAL STRESS VALUES 

Numerical results of the two example problems are presented in this 
Appendix. Numerical values of the stresses for the first example, namely the 
problem of a circular disk subjected to a pair of diametrally opposite concen- 
trated loads, are given in tables 2 through 6. The exact analytical solu- 
tions are also listed for comparison. Numerical results of the second example, 
namely an infinite plate with an elliptic hole subjected to a constant intern- 
al pressure, are presented in figures 11 through 14 and tables 7 through 
9. For the purpose of comparison, the existing analytic solutions are also 
made available in the figures and the tables. 

1 

Table 2.- Stresses at contour C5: (x2 t y2) 
T 

q 6.0; circular disk. 

- e - u 
Y 
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1 
T 

Table 3.- Stresses at contour C4: (x2 t y2) = 8.0; circular disk. 

1 
-0 - u 

- --. -.. _~. I 

X EXACTc K NUMERICAL 
=41 8 I16 

3.061 .7451(1.121 1 .75031 .7464 

1.5611.656 11.851 Il.805 Il.673 

0.0 (2.900 (1.991 12.611 12.852 

Table 4.- Stresses at contour 

1 
T 

c3: (x2 + y2) = 9.0; circular disk. 

- 8 -u V 

X EXACT lpMER1;;L - E)WT-K-g-8. K = 8 64 - lpMER;FL 64 

9.00 .0668 .0752 .0669 .0669 C .0703 -.1144 .0537 .0703 c 

8.31 .0782 .0870 .0783 .0783 C .0722 -.0247 .0636 .0722 C 

6.36 .1322 .1410 .1323 .1323 C .0813 .1104 .0844 .0814 C 
._ - 

3.44 .4290 .3331 .4277 .x-i- ---,I470 I.0366 .1443 .1480 .1474 
- ---_. ---. 

1.76 1.377 2.148 1.377 1.379 C .5355 1.269 .4737 .5402 .5376 

5.349 5.936 6.046 6.383 2.048 4.664 6.013 6.325 
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1 
s 

Table 5.- Stresses at contour C2: (x2 t y2) = 9.5; circular disk. 

6.71 .0651 .078 .0657 .0651 .0360 .066 .0394 .0361 -1 
3.63 .2197 .233 .2204 l 220 .0506 - .ll .0365 .0509 

1.85 .8038 .597 .8014 .8041 .1383 - .622 .0912 .1398 

0.0 12.42 7.831 10.85 12.13 12.74 3.694 9.16 11.96 

1 
7 

Table 6.- Stresses at contour Cl: (x2 t y2) = 9.75; circular disk. 
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Figure ll.- Tangential stress at the elliptic boundary. 
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Tangential stress at the elliptic boundary 
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Figure 13.- Tangential stress at the elliptic boundary. 
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Figure 14.- Variation of source densities. 
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Table 7.~ Numerical values 

(Elliptic 
of 1 on the contour C l 1' $= 0.1 

hole with % = 5) 

I I Maximum Shear Stress T 1 
x/a EXACT I K NUMERICAL 

=4 8 1 16 1 32 
I 

1.100 .3520 .345 .3551 .3582 .3522 

1.079 .6304 .888 .5702 .6114 .6287 
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Table 8.- Numerical values of T on the contour C2: $ = 0.06 

(Elliptic hole with g= 5) 

I Maximum Shear Stress T 

x/a t t anal. L numerical 
K=81 16 1 32 

I .406 I .2941 I .473 I .3316 I .2949 

I .207 1 a2598 1 .512 1 .2411 1 .2636 

I -000 1 .2'+96 1 1.366 1 .2884 1 .2475 



Table 9.- Numerical values 

(Elliptic 

of T on the contour C 6 : -= .04 3 a 
hole with g = 5) 

Maximum Shear Stress T 
I 

I .578 1 .339 1 1.40 1 .352 1 .323 1 

.398 .274 .327 .414 .283 

.203 .243 1.67 .064 .240 

I .ooo ] .239 1 1.1 1 .973 1 ,169 1 
I I I I I I 
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